Solar EUV and X-ray Irradiance

Recent Results and New Prospects

Tom Woods

Laboratory for Atmospheric and Space Physics University of Colorado

Stan Solomon

High Altitude Observatory
National Center for Atmospheric Research

Scott Bailey

Center for Atmospheric Sciences
Hampton University

Solar Reference Spectrum

Solar Vacuum-Ultraviolet Reference Spectrum

Energy Deposition in the Upper Atmosphere

Energy Deposition in the Upper Atmosphere

Solar Ultraviolet Measurements: Past & Present

SNOE Solar X-ray Photometer Results

Electron Density Profile — High Solar Activity

Atmospheric Effects of Increased XUV Fluxes

- Photoelectrons
 - Increased fluxes in lower thermosphere models match data better
- Ionization Rates
 - Increased in lower ionosphere, mostly due to photoelectron ionization
- E-region Ion Composition
 - Models produce $NO^+/O_2^+ > \sim 1$, better agreement with measurements
- Odd-Nitrogen Chemistry
 - More production, leads to better agreement with measured NO levels
- Odd-Oxygen Chemistry
 - More variability, remains to be studied
- Heating Rates
 - More variability, but counterbalanced by more NO cooling

Solar Ultraviolet Models

Priorities for Continuing and Future Solar Ultraviolet Irradiance Measurements

- Extended TIMED mission
 - continuing measurements by Solar EUV Experiment
 - need to "see" solar minimum
- Temporal overlap between TIMED/SEE and GOES/EUV
 - needed to correctly interpret GOES/EUV low-resolution channels
 - intercalibration
- Temporal overlap between UARS, TIMED/SEE and the SORCE mission
 - fills EUV gap in SORCE measurements
 - intercalibration
- Spectrally resolved XUV measurements (1 25 nm)
 - temporal and spectral overlap with TIMED/SEE and/or GOES/EUV
 - could be frequent sub-orbital, Earth orbit, or L1 (e.g., SDO)

Some XUV Measurement Techniques

- Detector Standards
 - Ionization cell
 - Photodiode with thin-film coatings
- Optics Free Spectrometers
 - Ionization cell in electron-energy mode
 - Avalanche photodiode in photon-counting mode
 - Solid-state detector in photon-counting mode
- Grating Spectrometers
 - Grazing-incidence grating spectrometer
 - Normal-incidence grating spectrometer with multi-layer coating
- Bragg Crystal Spectrometer

Solar Ultraviolet Measurements: Past, Present, & Future

Requirements for Spectral Resolution — The Atmospheric Perspective

Requirements for Spectral Resolution — The Atmospheric Perspective

So, what is the necessary spectral resolution for measurements of solar EUV and soft X-rays?

1 nm!

Conclusions

- Significant recent progress on solar soft X-ray and energetic EUV flux ("XUV")
- Improved agreement with atmospheric models in several areas
- Imminent new solar EUV measurements
- Continuing improvement in solar UV models
- Need for continuing measurements, particularly in areas of greatest uncertainty:
 - EUV intensity and variability
 - XUV spectral variability